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Modular Next Generation Fast Neutron Detector for Portal Monitoring
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exploring the nuclear frontier
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* Current neutron portal monitoring methods rely on neutron
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thermalization for detection.
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Figure 1: Example of a portal monitor via polimaster.
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MCNP6 SIMULATIONS:

* MCNP6 [1] simulations replicate ambient neutron background and realistic
sources.

* Simulations have been done with 235U+n for the proposed detector and 252Cf
for a 3He detector as well as the proposed detector.

CONCLUSION:

seconds.
STATISTICAL ANALYSIS: * The National Committee on Radiation Instrumentation set an efficiency requirement of
* Uniformly most powerful Bayes tests (UMPBTs) [2] were used to define tests for 2.5 cps/ng. A helium-3 detector [3] has an efficiency of 3.0(2) cps/ng.
positive identification. * The proposed detector has an estimated efficiency of 26.8, after size corrections.
* MCNPé simulations of ambient neutron background power UMPBTs to « With UMPBTSs, the proposed detector achieves significantly greater positive detection
determine the sensitivity limitations of our detector. confidence levels than a helium-3 detector [3].
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* Without moderation, the proposed detector can identify a source emitting approx.
500 n/s (8.1 mg) in 25 minutes, similarly approx. 5000 n/s (80.7 mg) in 192
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Figure 4: Confidence levels in the
form 1 in gamma, i.e. gamma=10%
corresponds to a confidence level of
1 in 104, which were calculated for a
3He detector (green) and the
proposed detector using the UMPBT
model (black). The confidence levels
were derived from sets of 50 MCNP
simulations with and without a source
present. Comparison of the
confidence levels shows a sensitivity
comparison of the proposed detector
to a standard 3He detector.
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