Modular Next Generation Fast Neutron Detector for Portal Monitoring

E. Aboud,¹ S. Ahn,¹ G.V. Rogachev,¹ V.E. Johnson,³ J. Bishop, ¹ G. Christian, ¹ E. Koshchiy,¹ C.E.Parker, ¹ D.P Scriven ¹

¹Cyclotron Institute, Texas A&M University, College Station, TX 77843 USA ²Departments of Chemistry and Physics, Washington University, St. Louis, MO 63130 USA ³Department of Statistics, Texas A&M University, College Station, TX 77843 USA

Total detector size: 50cmx50cmx25cm

BACKGROUND:

- Special nuclear materials (SNMs) such as HEU and WGPu have nonspontaneous fissioning primary components, ²³⁵U and ²³⁹Pu respectively.
- Current neutron portal monitoring methods rely on neutron thermalization for detection.

Figure 1: Example of a portal monitor via polimaster.

MCNP6 SIMULATIONS:

- MCNP6 [1] simulations replicate ambient neutron background and realistic sources.
- Simulations have been done with ²³⁵U+n for the proposed detector and ²⁵²Cf for a ³He detector as well as the proposed detector.

STATISTICAL ANALYSIS:

- Uniformly most powerful Bayes tests (UMPBTs) [2] were used to define tests for positive identification.
- MCNP6 simulations of ambient neutron background power UMPBTs to determine the sensitivity limitations of our detector.

References:

[1] T. Goorley, et al., "Initial MCNP6 Release Overview", Nuclear Technology 180, pp 298-315 (Dec 2012).

[2] V.E. Johnson, "UNIFORMLY MOST POWERFUL BAYESIAN TESTS", Annals of Statistics (2013)

[3] R. T. Kouzes et al., Passive neutron detection for interdiction of nuclear material at borders, NIM A (2008)

Figure 3: Comparison of neutron detection efficiency of the proposed detector and commercially-available detectors studied in Kouzes *et al.* [3]. Values marked with a dagger were taken from Kouzes *et al.*

Detector Type	Efficien
Proposed Detector - Without UMPBT	
³ He proportional detector (1 Tube)	3
BF ₃ proportional detector (3 tubes)	3
Boron-lined proportional detector	3
Lithium-loaded glass fibers	1
Coated non-scintillating plastic fibers	2

Figure 4: Confidence levels in the form 1 in gamma, i.e. gamma=10⁶ corresponds to a confidence level of 1 in 10⁶, which were calculated for a ³He detector (green) and the proposed detector using the UMPBT model (black). The confidence levels were derived from sets of 50 MCNP simulations with and without a source present. Comparison of the confidence levels shows a sensitivity comparison of the proposed detector to a standard ³He detector.

CONCLUSION:

- Without moderation, the proposed detector can identify a source emitting approx. 500 n/s (8.1 mg) in 25 minutes, similarly approx. 5000 n/s (80.7 mg) in 192 seconds.
- The National Committee on Radiation Instrumentation set an efficiency requirement of 2.5 cps/ng. A helium-3 detector [3] has an efficiency of 3.0(2) cps/ng.
- The proposed detector has an estimated efficiency of 26.8, after size corrections.
- With UMPBTs, the proposed detector achieves significantly greater positive detection confidence levels than a helium-3 detector [3].

Nuclear Solutions Institute

UNIVERSITY-BASED RESEARC